"ผู้จัดทำ"

     กุลชนก พันธ์คำ

  กมลวรรณ ช่วยสถิตย์

 

MATHEMATICS FORMULA

สูตรคณิตศาสตร์ ชั้นมัธยมศึกษาปีที่ 3

 

พหุนาม

 

เอกนาม คือ นิพจน์ที่สามารถเขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไป โดยที่เลขชี้กำลังของตัวแปรแต่ละตัวเป็นศูนย์หรือจำนวนเต็มบวก
พหุนาม คือ นิพจน์สามารถเขียนในรูปเอกนามหรือสามารถเขียนในรูปการบวกของเอกนามตั้ง
แต่สองเอกนามขึ้นไป
การแยกตัวประกอบของพหุนาม
การแยกตัวประกอบของพหุนามคือ การเขียนพหุนามนั้นในรูปของการคูณของพหุนามที่มีดีกรีต่ำกว่า
พหุนามดีกรีสองตัวแปรเดียว คือ พหุนามที่เขียนได้ในรูป ax2 + bx +cเมื่อ a, b, c เป็นค่าคงตัวที่a 0 และ x เป็นตัวแปร

การแยกตัวประกอบของพหุนามดีกรีสอง
x2+ bx + c เมื่อ b และ c เป็นจำนวนเต็ม ทำได้เมื่อสามารถหาจำนวนเต็มสองจำนวนที่คูณกันได้ c และ
บวกกันได้ b
ให้ d และ e แทนจำนวนเต็มสองจำนวนดังกล่าว ดังนั้น
de = c
d + e = b
ฉะนั้น x2 + bx + c = x2 + (d + e)x + de
= ( x2 + dx ) + ( ex + de )
= ( x + d )x + ( x + d )e
= ( x + d ) ( x + e )
ดังนั้น x2 + bx +c แยกตัวประกอบได้เป็น ( x + d ) ( x + e )

ตัวอย่าง
(6x-5) (x+1) = (6x-5) (x) + (6x-5) (1)
= 6x2 – 5x + 6x – 5
= 6x2 + (5x+6x) – 5
= 6x2 -5x +6x -5
= 6x2 + x – 5
จากตัวอย่างข้างต้น อาจแสดงวิธีหาพหุนามที่เป็นผลลัพธ์ได้ดังนี้
1. (6x – 5)(x + 1)
= 6x2
- พจน์หน้าของพหุนามวงเล็บแรก x พจน์หน้าของพหุนามวงเล็บหลัง = พจน์หน้าของพหุนามของผลลัพธ์
2. (6x - 5)(x + 1)
= -5
-พจน์หลังของพหุนามวงเล็บแรก x พจน์หลังของพหุนามวงเล็บหลัง = พจน์หลังของพหุนามของผลลัพธ์
3. (6x – 5)(x + 1)
= 6x + (-5x )
- พจน์หน้าของพหุนามวงเล็บแรก x พจน์หลังของพหุนามวงเล็บหลัง + พจน์หน้าของพหุนามวงเล็บแรก x พจน์หน้าของพหุนามวงเล็บหลัง

พจน์กลางของพหุนามที่เป็นผลลัพธ์
การแยกตัวประกอบของพหุนามดีกรีสองที่เป็นกำลังสองสมบูรณ์
กำลังสองสมบูรณ์ คือ พหุนามดีกรีสองที่แยกตัวประกอบแล้วได้ตัวประกอบเป็นพหุนามดีกรีหนึ่งซ้ำกัน
ดังนั้น พหุนามดีกรีสองที่เป็นกำลังสองสมบูรณ์แยกตัวประกอบได้ดังนี้
x2 + 2ax + a2 = ( x + a )2
x2 – 2ax + a2 = ( x – a )2
รูปทั่วไปของพหุนามที่เป็นกำลังสองสมบูรณ์คือ a2 +2ab + b2 และ a2 -2ab +b2 เมื่อ a และ b เป็นพหุนาม แยกตัวประกอบได้ดังนี้

สูตร a2 +2ab + b2 = ( a + b )2
a2 -2ab +b2 = (a-b)2
การแยกตัวประกอบของพหุนามดีกรีสองที่เป็นผลต่างของกำลังสอง
พหุนามดีกรีสองที่สามารถเขียนได้ในรูป x2 – a2 เมื่อ a เป็นจำนวนจริงบวกเรียกว่า ผลต่างของกำลังสอง
จาก x2 – a2 สามารถแยกตัวประกอบได้ดังนี้ x2 – a2 = ( x + a ) ( x – a )
สูตร x2 – a2 = ( x + a ) (x-a)

การแยกตัวประกอบของพหุนามดีกรีสอง x2 + bx + c โดยวิธีทำเป็นกำลังสองสมบูรณ์ สรุปได้คือ
1. จัดพหุนามที่กำหนดให้อยู่ในรูป x2 + 2px +c หรือ x2 -2px +c เมื่อ p เป็นจำนวนจริงบวก
2. ทำบางส่วนของพหุนามที่จัดไว้ในข้อ 1 ให้อยู่ในรูปกำลังสองสมบูรณ์ โดยนำกำลังสองของ p บวกเข้าและลบออกดังนี้
x2 + 2px +c = ( x2 + 2px + p2 ) – p2 + c
= ( x + p)2 – ( p2 - c )
x2 – 2px + c = ( x2 - 2px + p2 ) – p2 + c
= ( x - p)2 – ( p2 - c )
3. ถ้า p2 – c = d2 เมื่อ d เป็นจำนวนจริงบวกจากข้อ 2 จะได้
x2 + 2px + c = ( x + p)2 – d2
x2 - 2px + c = ( x - p)2 – d2
4. แยกตัวประกอบของ ( x + p )2 – d2 หรือ ( x – p )2 – d2 โดยใช้สูตรการแยกตัวประกอบของผลต่างของกำลังสอง
การแยกตัวประกอบของพหุนามดีกรีสูงกว่าสองที่มีสัมประสิทธิ์เป็นจำนวนเต็ม
พหุนามที่อยู่ในรูป A3 + B3 และ A3 - B3 ว่าผลบวกของกำลังสาม ตามลำดับ

สูตร A3 + B3 = ( A + B )( A2 –AB + B2) 
A3 - B3 = ( A - B )( A2 +AB + B2)

 

h

 

สมการกำลังสอง

 

สมการกำลังสองใดๆ ที่มีสัมประสิทธิ์เป็นจำนวนจริง (หรือจำนวนเชิงซ้อน) จะมีรากของสมการ 2 คำตอบเสมอ ซึ่งอาจจะเท่ากันก็ได้ โดยที่รากของสมการสามารถเป็นได้ทั้งจำนวนจริงหรือจำนวนเชิงซ้อน สามารถคำนวณได้จากสูตร

e

ขั้นตอนในการหาคำตอบปัญหาโดยใช้สมการ
1. อ่านปัญหา
2. สมมุติตัวแปรหนึ่งตัว แทนจำนวนที่ต้องการทราบค่า
3. หาสมการที่แสดงความเกี่ยวข้องของตัวแปรกับจำนวนอื่นๆ ที่ทราบค่า
4. แก้สมการ
5. ใช้คำตอบของสมการหาคำตอบของปัญหา
6. ตรวจคำตอบ

 

h

 

ความน่าจะเป็น

 

การทดลองสุ่ม คือ การกระทำที่เราทราบว่าผลทั้งหมดที่อาจจะเกิดขึ้นมีอะไรบ้าง แต่ไม่สามารถบอกอย่างถูกต้องแน่นอนว่าจะเกิดผลอะไรจากผลทั้งหมดที่เป็นไปได้เหล่านั้น
จากการทดลองสุ่มและเราสามารถเขียนทั้งหมดที่อาจเกิดขึ้นจากการทดลองสุ่มได้ โดยอาจใช้แผนภาพช่วย
แซมเปิลสเปซ คือ กลุ่มของผลลัพธ์ที่อาจเป็นไปได้ทั้งหมดจากการทดลองสุ่ม

 

h

 

สถิติ

 

ในเรื่องสถิตินี้ประกอบไปด้วย
1.ตารางแจกแจงความถี่ จะประกอบด้วย
1. อันตรภาคชั้น คือ ช่วงของตัวเลขที่แบ่งเป็นชั้นๆในตารางแจกแจงความถี่
2. ข้อมูลดิบ คือ ข้อมูลที่ได้มาจากแหล่งข้อมูลโดยตรง
3. ความถี่ คือ จำนวนของข้อมูลดิบในแต่ละช่วงของอันตรภาคชั้น
ความรู้ในการสร้างตารางแจกแจงความถี่
1. ในการสร้างตารางแจกแจงความถี่ จำนวนอันตรภาคชั้นที่นิยมใช้กันคือ 5 ถึง 15 อันตรภาคชั้นตามความมากน้อยของข้อมูล
2. ในการสร้างตารางแจกแจงความถี่ ความกว้างของอันตรภาคชั้นไม่จำเป็นต้องเท่ากันทุกชั้น
3. ในกรณีที่มีคะแนนดิบเป็นจำนวนมากๆ ถ้าค่าที่น้อยที่สุดและค่าที่มากที่สุดของอันตรภาคชั้นเป็นค่าที่สังเกตได้ง่าย การบันทึกกร่อยคะแนนจะสะดวกขึ้น
2.ขอบล่าง = ค่าที่น้อยที่สุดของอันตรภาคชั้นนั้น + ค่าที่มากที่สุดของอันตรภาคชั้นที่ต่ำกว่าหนึ่งชั้น/2
3.ขอบบน = ค่าที่มากที่สุดของอันตรภาคชั้นนั้น + ค่าที่น้อยที่สุดของอันตรภาคชั้นที่สูงกว่าหนึ่งชั้น/2
4. ความกว้างของอันตรภาคชั้น = ขอบล่าง – ขอบบน

5. จุดกึ่งกลางชั้น  d

หรือ จุดกึ่งกลางชั้น = ค่าที่น้อยที่สุดของอันตรภาคชั้น + ค่าที่มากที่สุดของอันตรภาคชั้น/2
6. ค่ากลางของข้อมูล 
ค่ากลางของข้อมูล คือ ค่าที่สามารถนำมาแทนข้อมูลกลุ่มนั้นๆ เพื่อที่จะใช้ในการวิเคราะห์ข้อมูลนั้นๆได้
ค่ากลางของข้อมูล สามารถแบ่งออกได้เป็น 3 ชนิดใหญ่ๆ ได้แก่ 
1. ค่าเฉลี่ยเลขคณิต ได้จากการหารผลบวกของข้อมูลทั้งหมดด้วยจำนวนข้อมูล
2. ฐานนิยม คือ ข้อมูลที่มีความถี่สูงสุดในข้อมูลนั้น
3. มัธยมฐาน คือ ค่าที่อยู่กึ่งกลางของข้อมูลทั้งหมดซึ่งเมื่อเรียงข้อมูลชุดนั้นจากน้อยไปมาก หรือจากมาไปน้อยแล้ว ข้อมูลที่มากกว่าค่านั้น

 

h

 

                                                                                                                    d

  ที่มาเว็บ : The mathematical formula
 
Free Web Hosting